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Neurobiology of Disease
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Subthalamo-Nigral Synapses Is Lost in Experimental
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Impairments of synaptic plasticity are a hallmark of several neurological disorders, including Parkinson’s disease (PD) which results
from the progressive loss of dopaminergic neurons of the substantia nigra pars compacta leading to abnormal activity within the basal
ganglia (BG) network and pathological motor symptoms. Indeed, disrupted plasticity at corticostriatal glutamatergic synapses, the
gateway of the BG, is correlated to the onset of PD-related movement disorders and thus has been proposed to be a key neural substrate
regulating information flow and motor function in BG circuits. However, a critical question is whether similar plasticity impairments
could occur at other glutamatergic connections within the BG that would also affect the inhibitory influence of the network on the motor
thalamus. Here, we show thatlong-term plasticity at subthalamo-nigral glutamatergic synapses (STN-SNr) sculpting the activity patterns
of nigral neurons, the main output of the network, is also affected in experimental parkinsonism. Using whole-cell patch-clamp in acute
rat brain slices, we describe a molecular pathway supporting an activity-dependent long-term depression of STN-SNr synapses through
an NMDAR-and D1/5 dopamine receptor-mediated endocytosis of synaptic AMPA glutamate receptors. We also show that this plastic
property is lost in an experimental rat model of PD but can be restored through the recruitment of dopamine D1/5 receptors. Altogether,
our findings suggest that pathological impairments of subthalamo-nigral plasticity may enhance BG outputs and thereby contribute to

PD-related motor dysfunctions.

Introduction

Parkinson’s disease (PD) is caused by the loss of dopaminergic
(DAergic) projections from the substantia nigra pars compacta
(SNc). The resulting dramatic rise in firing of basal ganglia (BG)
output neurons leads to bradykinesia, rigidity, and tremor symp-
toms. Most attention has focused upon the corticostriatal synapse,
i.e., the main BG input, where dopaminergic denervation in experi-
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mental models of PD is correlated with impaired long-term poten-
tiation (LTP) and long-term depression (LTD) of glutamatergic
neurotransmission that can be restored by chronic administration of
the dopamine precursor L-DOPA, the most effective therapeutic
treatment for PD. Corticostriatal plasticity is thus envisioned as the
cellular substrate regulating information flow and motor function in
BG circuits (Calabresi et al., 1992a,c; Kreitzer and Malenka, 2007).
However, accumulating evidence indicates that both physiological
and pathological plasticity might take place at several stages of the
cortico-BG—thalamocortical network as SNc¢ DAergic projections
innervate various BG nuclei.

Among those, the substantia nigra pars reticulata (SNr) is a
major output of the BG network—the functional equivalent in
rodents of the internal portion of the globus pallidus in pri-
mates—that conveys information to the motor thalamus and the
brainstem through the action of pacemaking GABAergic neurons
(Murer et al., 1997; Atherton and Bevan, 2005). SNr tonic activity
is regulated by a combination of striato-nigral GABAergic inhib-
itory inputs and subthalamo-nigral (STN-SNr) glutamatergic
excitatory inputs that favor and prevent motor execution, respec-
tively (Alexander and Crutcher, 1990; Kravitz et al., 2010). There-
fore, the abnormal hyperactivity of the subthalamic nucleus
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(STN) reported in PD (Bergman et al., 1994) is considered as a
major cause of pathological activity in SNr neurons, and STN-
SNr synapses are viewed as critical connections shaping both
normal and pathological BG outputs (Murer et al., 1997; Tseng et
al., 2000). In addition, dendritically released DA from SNc neu-
rons also regulates the excitability of SNr neurons (Cheramy et
al., 1981), either directly (Zhou et al., 2009) or through the mod-
ulation of striato-nigral (Radnikow and Misgeld, 1998) and STN-
SNr inputs (Ibafiez-Sandoval et al., 2006). Thus, dysfunctions in
the DAergic modulation of SNr neuronal activity could play an
important role in the emergence of PD motor symptoms.

Yet, despite the body of evidence suggesting the importance of
STN-SNr synapses in the regulation of BG outputs, activity-
dependent adaptations in the efficacy of these connections re-
main unknown. We thus investigated long-term synaptic
plasticity at STN-SNr synapses and addressed whether it is af-
fected by chronic DA depletion. We found that tetanic stimula-
tion of STN afferents induces a persistent LTD of synaptic
transmission in naive rats. This form of synaptic plasticity occurs
through a postsynaptic NMDA receptor-mediated endocytosis of
GluA2-containing AMPA receptors. Moreover, we show that
both acute blockade of D1/5 DAergic receptors (D1/5R) and
chronic DA depletion abolish nigral LTD, and that activating
D1/5R restores LTD expression in DA-depleted slices. Together,
these results suggest that impairments in DA-dependent adapta-
tions of STN-SNr synapses observed in experimental parkinson-
ism could contribute to the pathological activity of BG outputs
and thereby promote PD-related motor dysfunctions.

Materials and Methods

Animals

Male Sprague Dawley rats were housed under a 12 h light/dark cycle with
food and water provided ad libitum. Every effort was made to minimize
animal suffering and to use the minimum number of animals possible.
Experimental procedures were conducted in accordance with the Insti-
tutional Animal Care and Use Committee of Bordeaux guidelines and
the European Communities Council Directive; 24 November, 1986 (86/
6091EEC).

6-Hydroxydopamine lesion

Rats (p15—p19) were anesthetized with ketamine (75 mg/kg) and xyla-
zine (10 mg/kg) and mounted on a Kopf stereotaxic frame, as previously
described (Miguelez et al., 2012). Briefly, 2 ul of 6-hydroxydopamine
(6-OHDA; 4 ug/ul) was infused at a rate of 0.5 ul/min into the right
medial forebrain bundle (relative to bregma; AP: —2.4 mm; ML: —1.2
mm; DV: —7.4and —7.9 mm; 1 ul was injected in each coordinate). After
each injection, the needle was left in place for an additional 2—4 min to
allow the toxin to diffuse into the structure before being slowly retracted.
Thirty minutes before surgery, desipramine (20 mg/kg, i.p.) was admin-
istered to avoid damage of the noradrenergic system.

Tissue preparation

Parasagittal slices containing both STN and SNr were prepared from
p25-p35 Sprague Dawley rats (Fig. la), i.e., from 10 to 15 d after
6-OHDA injection, a lag time we have shown adequate for DA cell loss to
occur and cause PD-related dysfunctions. Rats were anesthetized with
isoflurane and killed by decapitation. Brains were rapidly removed and
sectioned into 350-um-thick slices in the sagittal plane with a vibratome
(VT1200S, Leica Microsystems) in an ice-cold sucrose buffer solution of
the following composition (in mm): 250 sucrose, 2 KCl, 7 MgCl,, 0.5
CaCl,, 1.15 NaH,PO,, 11 glucose, and 26 NaHCO; (gassed with 95%
0,/5% CO,). Slices were then left for equilibration for ~1 h at room
temperature (~25°C) in an artificial CSF (ACSF) solution of the follow-
ing composition (in mm): 126 NaCl, 3.5 KCl, 2 CaCl,, 1.3 MgCl,, 1.2
NaH,PO,, 25 NaHCOj3, and 12 glucose (gassed with 95% O,/5% CO, at
32°C).
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Figure 1.  Electrophysiological properties of putative GABAergic and dopaminergic neurons

in substantia nigra. a, Schematic parasagittal section of a rat brain, showing the cortex and the
BG nuclei (Str, striatum; GP, globus pallidus; STN, subthalamic nucleus; SNc, substantia nigra
pars compacta; SNr, substantia nigra pars reticulata). Stimulation electrodes were implanted in
the posterior part of the STN and eEPSCs in SNr neurons were recorded in whole-cell voltage-
clamp. b, Typical example of autonomous pacemaking of a putative GABAergic neuron from the
substantia nigra pars reticulata. Right, Average action potential from the neuron in left panel. ¢,
Typical example of autonomous pacemaking of a putative DAergic neuron from the substantia
nigra pars reticulata. Right, Average action potential from the neuron in left panel. d, e, Sum-
mary histograms showing the differences in action potential firing frequency (d, GABAergic,
12.8 = 1.56 Hz; dopaminergic, 1.12 == 0.48 Hz; **p << 0.01) and action potential kinetics (e,
GABAergic, 0.648 = 0.031 ms; dopaminergic, 1.559 == 0.286 ms; p << 0.05) between the two
substantia nigra pars reticulata cell types.

Drugs

Unle‘gs otherwise stated, all drugs used were purchase from Abcam and pre-
pared as concentrated stock solutions and stored at —20°C. On the day of the
experiment, drugs were diluted and applied through the bath perfusion sys-
tem. GABAergic synaptic transmission was blocked for all experiments.
GABA,, and GABA; receptors were blocked with 10 um 2-(3-carboxypro-
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pyl)-3-amino-6-(4 methoxyphenyl)pyridazinium bromide (SR 95531), and
5 uM (28)-3-[[(18)-1-(3,4-dichlorophenyl)ethyl]amino-2 hydroxypropyl]
(phenylmethyl)phosphinic acid (CGP 55845), respectively. In some exper-
iments NMDA or AMPA/kainate receptors were also blocked (in addition of
GABAergic transmission) with 50 um D-(-)-2-amino-5-phosphonopen-
tanoic acid (p-APV), 20 um 6,7-dinitroquinoxaline-2,3-dione (DNQX),
respectively. The DAergic D1 receptor agonist (*)-6-chloro-2,3,4,5-
tetrahydro-1-phenyl-1 H-3-benzazepine hydrobromide (SKF81297; 2-5
uM) and antagonist (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-
2,3,4,5-tetrahydro-1 H-3-benzazepine hydrochloride (SCH23390; 5-10 um)
were purchased from Tocris Bioscience.

Electrophysiology

Whole-cell recordings. Single slices were transferred to a recording cham-
ber and perfused continuously (2 ml/min) with ACSF (see above) heated
to 32°C using a temperature control system (Badcontroller V, Luigs and
Neumann) and saturated with 95% O,/5% CO,. SNr neurons were vi-
sualized with infrared gradient contrast video microscopy (BX51WI,
Olympus) and a 40X water-immersion objective (60X/0.80 LUMPlan
FI/IR, Olympus). Whole-cell recordings were performed using 1.5 mm
external diameter borosilicate pipettes (GC150F-10, Harvard Apparatus)
prepared with a micropipette puller (P97, Sutter Instruments). Elec-
trodes (4-5 MQ)) were filled with a solution containing the following (in
mM): 120 potassium gluconate, 5 KCl, 10 EGTA, 10 HEPES, 1 CaCl,, 2.5
MgATP, and 0.5 Na,GTP, adjusted to pH 7.3 with KOH. For AMPA/
NMDA ratio and current-voltage relationship recordings, electrodes
were filled with a solution containing the following (in mm): 120
CsMeSO;, 15 CsCl, 8 NaCl, 0.2 EGTA, 10 HEPES, 2 MgATP, 0.3
Na,GTP, 10 TEA-Cl, 5 QX-314 [N-(2,6-dimethylphenylcarbamoyl-
methyl) triethylammonium bromide], adjusted to pH 7.3 with CsOH.
GABAergic neurons were distinguished from neighboring DAergic neu-
rons based on their electrophysiological properties. Briefly, the spon-
taneous firing activity of all neurons recorded was assessed at the
beginning of every experiment. This procedure enabled a clear dis-
tinction between GABAergic and dopaminergic neurons, either in
terms of action potential firing frequency (GABAergic, 12.8 = 1.56
Hz; dopaminergic, 1.12 = 0.48 Hz; p < 0.01), action potential half-
width (GABAergic, 0.648 * 0.031 ms; dopaminergic, 1.559 = 0.286 ms;
p < 0.05), or afterhyperpolarization (GABAergic, —63 = 0.8 mV; dopa-
minergic, —67.28 = 1.95 mV; p < 0.05; Fig. 1). Glutamatergic responses
were evoked in SNr neurons through monophasic electrical stimula-
tion of the STN with a tungsten bipolar electrode (TST33A05KT
Microelectrode Tungsten, World Precision Instruments) controlled
by an ISO-Flex stimulator (AMPI) (Fig. 1a). Single stimuli were de-
livered at 0.05 Hz and the responses were observed in nigral neurons
as evoked EPSCs in voltage-clamp (V},,;4 = —70 mV). Under these
conditions and after a stable eEPSC recording had been maintained
for 10 min, tetanic stimulation (four trains of 100 stimuli at 100 Hz,
delivered at 20 s interval) of STN-SNr fibers was used to induce LTD,
whereas the SNr neuron was recorded in current-clamp mode. All the ex-
periments were conducted in the continuous presence of the GABA, and
GABAj; antagonists SR95531 (10 um) and CGP55845 (5 um) to block inhib-
itory neurotransmission. Miniature EPSCs (mEPSCs) were recorded at —70
mV in 1 puM tetrodotoxin.

Data were recorded using a Multiclamp 700A amplifier and a Digidata
1322A interface controlled by Clampex 10.1 (Molecular Devices). Signals
were digitized at 20 kHz and low-pass filtered at 6 kHz, respectively.
Recordings with Kgluconate-filled and CsMeSO5-filled pipettes were
corrected for a junction potential of 12.6 and 7 mV, respectively. Series
resistance was monitored throughout the experiment by a brief voltage
step of —5 mV at the beginning of each recording. Data were discarded
when the series resistance increased or decreased by >20%.

Immunohistochemistry

Tyrosine hydroxylase immunostaining. Immunohistochemistry was per-
formed on overnight-fixed recorded slices (4% paraformaldehyde) as
previously described (Miguelez et al., 2012). After inactivation of endog-
enous peroxydases (3% H,O, in PBS for 30 min), slices were blocked in
1% bovine serum albumin (BSA) in PBS containing 0.3% Triton X-100
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for 30 min. Thereafter, sections were incubated in primary antibody
(1:10000 monoclonal anti-TH; MAB318, Millipore Bioscience Research
Reagents) overnight. After rinsing, the sections were treated with the
secondary antibody (1:1000 biotinylated horse anti-mouse IgG; Vector
Laboratories) for 90 min. Both immunoreagents were diluted in PBS
containing 1% BSA, 0.3% Triton X-100. Finally, sections were incubated
in avidin-biotin peroxidase complex (1:500; Vector Laboratories) for 60
min and immunoreactivity was revealed using diaminobenzidine tetra-
hydrochloride (Vector Laboratories). Sections were rinsed, mounted on
gelatin-coated slides, and coverslipped in vectamount (Vector Laborato-
ries). The entire procedure was performed at room temperature under
gentle agitation.

Tyrosine-hydroxylase optical density. Sections containing the striatum
were placed on an optical bench and scanned for further processing.
Mean optical density was analyzed using the Mercator image analysis
system (Explora Nova). Values were corrected for background staining.
TH optical density levels were expressed as a percentage of the values
from the intact side. Optical density was performed in slices containing
the striatum from sham and 6-OHDA-lesioned animals. Animals with
unilateral 6-OHDA infusions included in the study showed 88.11 = 1.3%
(n = 15) reduction in TH-fiber density in the striatum on the side ipsi-
lateral to the lesion.

Western blots

Single slices were transferred to a recording chamber in similar condi-
tions as described above and processed for LTD protocol alone or in
combination with SCH23390 (5 um) or H89 (10 wm). SNr were then
carefully dissected under a dissecting microscope and flash-frozen in a
Snapfrost (Cryobain) 30 min after LTD induction as described for elec-
trophysiological recordings. They were then sonicated in 1% SDS and
Western blotting was performed as described previously (Santini et al.,
2007) using antibodies against phospho-Ser897-GluN1 (1:1000, Milli-
pore). Beta-actin was determined as a loading control using an antibody
from Abcam (1:50000). Signal was produced by ECL Plus (GE Health-
care), detected by exposure to film (GE Healthcare Hyperfilm ECL, GE
Healthcare) and quantified using software from Li-Cor.

Data analysis and statistics

The amplitudes and kinetics of eEPSCs were calculated from the baseline
current preceding each individual stimulation artifact using Clampfit
10.1 (Molecular Devices). Stimulation artifacts were decreased off-line
for clarity. The magnitude of LTD was calculated as the average EPSC
amplitude at 30-35 min as a percentage of the average baseline (0-5
min) EPSC amplitude and reported in the text as the percentage of base-
line =SEM. Detection and analysis of mEPSCs were performed using a
software developed in house. Statistical significance was evaluated using
either a paired ¢ test for intragroup comparison or a one-way ANOVA
followed by Tukey’s post hoc test for between-group comparison. Cur-
rent amplitudes and kinetics were compared using the two-tailed un-
paired ¢ test. Given the small sample size of mEPSCs (n < 10)
nonparametric Mann—Whitney U test were used for statistical compari-
son of this set of data. Western blot data were analyzed by one-way
ANOVA, followed by Bonferroni post hoc test. Significance was consid-
ered at p < 0.05. Data are represented as group means * SEM.

Results

Properties of intact and DA-denervated STN-SNr connection

To investigate and compare the properties of STN-SNr synapses
from control and DA-depleted animals, electrical stimulations
were applied to the posterior part of the STN while recording
eEPSCs in SNr GABAergic neurons held at —70 mV in the pres-
ence of GABA, and GABAj, receptor antagonists SR95531 (10
uM) and CGP55845 (5 uMm), respectively (Fig. 1a). Briefly, the
respective contributions of AMPA and NMDA receptors to the
eEPSCs were evaluated by adding either the AMPA/kainate re-
ceptor antagonist DNQX (10 um) or the NMDA receptor antag-
onist D-APV (50 uM) to the bath saline. Whereas DNQX reduced
eEPSC amplitudes by 89.3 = 1.4% (n = 12; p < 0.0001, two-
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Figure2. Propertiesof subthalamo-nigral glutamatergic synapses derived fromintact and dopamine-denervated animals. a, Current—voltage relationships of AMPAR-mediated eEPSCs at STN-SNr synapses
in control (open circles, n = 9) and DA-depleted animals (6-OHDA; filled circles, n = 8). Insets, Representative STN-SNr AMPAR-mediated eEPSCs recorded at membrane potentials of —80mV to +60mV (20
mV-step increments). b, Average amplitude (bi, peak currentat —70 mV), rise time (bi), and decay (bii) of eEPSCs in control (white, n = 35) or DA-depleted (black, n = 35) conditions. Insets, Representative
€EPSCs recorded at —70 mV from control (gray) and 6-OHDA-treated (black) slices. ¢, Spontaneous subthalamo-nigral EPSCs (ci, SEPSCs). Average amplitude (ci, peak current at —70 mV) and decay (ciii) of
SEPSCsin control (white, n = 10) or DA-depleted (black, n = 10) conditions. Insets, Representative SEPSCs recorded at — 70 mV from control (gray) and 6-OHDA-treated (black) slices. d, AMPA/NMDA ratio at
STN-SNr synapses in control (n = 13) and DA-depleted conditions (n = 7). Insets, Representative eEPSC traces recorded at —70 mV (black) and +40 mV (gray) from control (top) and DA-depleted slices
(bottom). e, Paired-pulse facilitation of STN-SNr transmission. PPRs (peak EPSC2/peak EPSC1) in control (open circles, n = 22) and DA-depleted slices (black circles, n = 22) are represented as a function of
interstimulus interval. Control versus DA-depleted, p = 0.98, two-way ANOVA with Bonferroni’s post hoc test. Insets, Traces from a representative individual trial, and eEPSCs from control (gray) and lesioned
(black) slices recorded at a stimulation frequency of 40 Hz. f, Miniature EPSCs (i, mEPSCs) recorded from control (gray) or lesioned (black) animals in the presence of tetrodotoxin (1 wum). Cumulative probability

plots formEPSCamplitude (fii) and intereventinterval (i) in control (gray line, n = 7) and DA-depleted conditions (black line, n = 6). Insets, Average amplitude and frequency of mEPSCs in control (white,n =
7) or DA-depleted (black, n = 6) conditions (control vs DA-depleted, p > 0.05).

tailed unpaired t test), D-APV yielded an amplitude reduction of
17.8 £9.2% (n = 12; p = 0.349) suggesting that AMPA receptors
are the main contributors to evoked EPSCs at hyperpolarized
holding potentials (data not shown). To determine whether the
density or subunit composition of synaptic AMPA receptors

might be affected by DA denervation, we further examined
eEPSC amplitudes, kinetics, and current—voltage relationships in
intact and DA-depleted situations. In both conditions, eEPSCs
showed similar current—voltage relationships (I-V curve slope:
control, 1.52 * 0.20 pA/mV, n = 9; DA-depleted, 1.90 = 0.31
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pA/mV, n = 8; p = 0.307, two-tailed unpaired ¢ test; Fig. 2a) and
inward rectification index (control, 0.78 * 0.12, n = 9; 6-OHDA,
0.70 = 0.09, n = 8; p = 0.604), as well as similar amplitudes
(control, 87.2 = 2 pA, n = 35; DA-depleted, 91.1 £ 7 pA, n = 35;
p = 0.55; Fig. 2bi), rise time (control, 1.22 * 0.08 ms, n = 35;
DA-depleted, 1.05 = 0.08 ms, n = 35; p = 0.129; Fig. 2bii), and
decay (control, 7.8 = 0.5 ms, n = 35; DA-depleted, 7.1 = 0.6 ms,
n = 35; p = 0.397; Fig. 2biii), indicating that DA depletion does
not affect synaptic AMPA receptor composition or properties.
This conclusion was strengthened by spontaneous EPSCs record-
ings (SEPSCs) which showed similar amplitudes (control, 21 =
2.2 pA, n = 10; DA-depleted, 20.9 £ 2.4 pA, n = 10; p = 0.912)
and decay kinetics (control, 4.4 = 0.4 ms, n = 10; DA-depleted,
3.5 = 0.4 ms, n = 10; p = 0.105) in control and DA-depleted
context (Fig. 2¢). Comparative measurement of the ratio of
AMPAR-(peak current, V; ;g = —60 mV) to NMDAR-mediated
EPSCs (current at 50 ms poststimulation, V}, 4 = +40 mV) did
notreveal any significant difference (control, 3.08 * 0.34,n = 10;
DA-depleted, 3.07 = 0.43, n = 7; p = 0.99; Fig. 2d), suggesting
similar densities of synaptic NMDA receptors in intact and DA-
depleted conditions. Finally, we investigated whether glutamate
release from STN afferents was changed after DA denervation by
applying paired stimulations over a range of frequencies (1, 2, 5,
10, 20, 50, 100 Hz). Paired-pulse recordings revealed that STN-
SNr synapses from control and 6-OHDA-lesioned animals were
facilitated at high stimulation frequencies and had comparable

tracellular dialysis-related impairments of
plasticity (Malinow and Tsien, 1990). Sur-
prisingly, challenging STN-SNr synapses
with tetanic stimulation (tetanus, 4 X 100
Hz — 1 s) to excitatory STN inputs while
recording SNr neurons in current-clamp
mode produced a robust LTD of the
eEPSCs (62.6 * 2.1% of baseline, n = 25;
p < 0.0001, two-tailed paired ¢ test; Fig.
3a). No significant difference in PPRs was
observed before and after the induction of plasticity (PPR at 20
Hz before plasticity, 1.25 % 0.03; PPR at 20 Hz after plasticity,
1.29 = 0.06, n = 25; p = 0.359, two-tailed paired ¢ test; Fig. 3b),
suggesting no presynaptic change in the release probability of
glutamate and a postsynaptic locus of expression. Interestingly,
when applied to brain slices obtained from DA-depleted animals,
tetanic stimulation did not produce any change in the amplitude
of eEPSCs (105.1 * 2.5% of baseline, n = 13; p = 0.09, two-tailed
paired ¢ test; Fig. 3¢) nor change in PPR (PPR at 20 Hz before
plasticity, 1.24 = 0.03; PPR at 20 Hz after plasticity, 1.23 = 0.04,
n = 13; p = 0.842; Fig. 3d), indicating that this plastic property is
lost in experimental parkinsonism and that the expression of
tetanus-induced STN-SNr LTD might require DAergic signaling.

NMDA-dependent endocytosis of AMPA receptors at
STN-SNr synapses

We then investigated the molecular pathways involved in the
onset of STN-SNr LTD. Because LTD induction at corticostriatal
synapses was previously shown to require the activation of
metabotropic glutamate receptors (Calabresi et al., 1992b; Kre-
itzer and Malenka, 2007), we examined their possible involve-
mentin tetanus-induced LTD at STN-SNr synapses. We repeated
the protocol in the presence of the large-spectrum group I/II
metabotropic glutamate receptor antagonist, MCPG (250 uM).
Surprisingly, MCPG did not prevent LTD induction (71.7 =
1.4% of baseline, n = 15; p < 0.0001, two-tailed paired ¢ test; Fig.
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4a). Implication of endocannabinoid-associated signalization
was also ruled out as bath application of the cannabinoid CB1
receptor antagonist AM251 comparably did not prevent LTD
induction (10 uM; 59 = 1.4% of baseline, n = 13; p = 0.035,
two-tailed paired ¢ test; Fig. 4b).

As unchanged PPR argued in favor of a postsynaptic mecha-
nism, we then turned to assess the implication NMDA receptors
in the induction of LTD by repeating the protocol in the presence
of the NMDA receptor antagonist D-APV (50 um). Tetanus-
induced LTD was completely prevented under this condition
(100.8 = 2.8% of baseline, n = 19; p = 0.647, two-tailed paired ¢
test; Fig. 5a). Importantly, LTD was also abolished when applying
the calcium chelator BAPTA (10 uMm) inside the patch pipette,
indicating that chelating postsynaptic calcium entry, presumably
through NMDA receptors, is sufficient to prevent plasticity in-
duction (110.4 = 2.9% of baseline, n = 11; p = 0.536, two-tailed
paired ftest; Fig. 5b). Because several studies have provided evidence
that various forms of NMDA-dependent LTD involve a reduction in
the number of postsynaptic AMPA receptors through enhanced
clathrin-mediated endocytosis of GluA2-containing AMPAR
(Liischer et al., 1999; Bredt and Nicoll, 2003), we next examined
whether tetanus-induced STN-SNr LTD involved a regulation of
AMPA receptor trafficking. To do so, patch pipettes were filled with
a synthetic peptide derived from the GluA2 carboxy tail, GluA2;y
(YKEGYNVYG, 100 pg/ml), known to block activity-dependent,
but not constitutive, endocytosis of GluA2-containing AMPA recep-
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tors without affecting basal synaptic transmission (Ahmadian et al.,
2004; Yu et al., 2008). LTD was prevented by the postsynaptic appli-
cation of GluA2;y (100.9 * 2% of baseline, n = 19; p = 0.6, two-
tailed paired ¢ test) but not by the mutated inactive peptide GluA2; ,
(AKEGANVAG, 72.6 £ 1% of baseline, n = 16; p < 0.0001, two-
tailed paired r test; Fig. 5¢). These results indicate that tetanus-
induced LTD occurs through the activity-dependent endocytosis of
GluA2-containing AMPA receptors (Fig. 5d).

Thus, it appears that nigral NMDA receptors are activated
during tetanic stimulation of STN excitatory inputs to SNr, lead-
ing to along-term downregulation of glutamatergic transmission
through the activity-dependent endocytosis of AMPA receptors.

DAergic modulation of STN-SNr LTD

GABAergic neurons from the SNr receive an important dendritic
DAergic innervation coming from the SNc which contributes to
the regulation of their excitability, either directly (Zhou et al.,
2009) or indirectly through the modulation of striato-nigral in-
hibitory transmission (Radnikow and Misgeld, 1998). However,
DA might also modulate SNr neuronal firing by acting on STN-
SNr excitatory transmission (Ibafiez-Sandoval et al., 2006). We
therefore investigated whether endogenous DA release might
contribute to the regulation of STN-SNr synaptic plasticity, as
shown for excitatory transmission in the striatum. Considering
the postsynaptic location of LTD expression and the fact that SNr
neurons predominantly express D1/5R (Zhou et al., 2009; Kliem
etal., 2010), we studied the action of the D1/5R-selective antag-
onist SCH23390 on the expression of STN-SNr LTD. Plasticity
expression was prevented by the addition of SCH23390 (5 uMm) to
the bath (99.6 £ 2.1% of baseline, n = 16; p = 0.911, two-tailed
paired t test; Fig. 6a). D1/5R-associated intracellular signaling
therefore contributes to the induction of LTD. To confirm this
observation, we next tested potential signaling pathways down-
stream of D1/5R. The G,-coupled D1/5R positively regulates the
production of cAMP by adenylyl cyclase, which, in turn, targets
well characterized effectors including protein kinase A (PKA;
Greengard, 2001). To question whether the D1/5R-associated
contribution to LTD induction depends on PKA activation, we
repeated the protocol in the presence of H89 (10 um), a
membrane-permeant inhibitor of PKA. Blocking PKA activity
resulted in impaired plasticity, demonstrating that LTD induc-
tion requires D1/5R-associated signaling (103.1 * 1.6% of base-
line, n = 14; p = 0.138, two-tailed paired t test; Fig. 6b). These
data suggest that D1/5R activation likely modulates NMDA sig-
naling through PKA-dependent mechanisms. This hypothesis
was further supported by monitoring the phosphorylation levels
of the NMDA receptor GluN1 subunit at Ser897, a residue tar-
geted by PKA (Tingley et al., 1997). Although LTD induction
triggered a significant increase in the PKA-dependent phosphor-
ylation of GluN1 (p = 0.007, one-way ANOVA with Bonferroni’s
post hoc test; Fig. 6¢), this rise was prevented by the application of
either the D1/5R antagonist SCH23390 or the PKA inhibitor H89
(Fig. 6¢). Together, these results indicate that SNr NMDAR and
D1/5R synergistically contribute to the long-term downregula-
tion of STN-SNr excitatory transmission.

D1/5R activation restores STN-SNr LTD in

experimental parkinsonism

SNr neurons from DA-depleted slices did not show tetanus-
induced LTD (Fig. 3c). Because similar results were observed
when perfusing the D1/5R antagonist SCH23390 in slices from
control animals, one may hypothesize that impaired plasticity in
slices from 6-OHDA-lesioned animals results from disrupted
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properties of synaptic inputs regulating
2 their activity is of particular relevance in
the context of movement execution. We
show here that challenging subthalamic af-
ferents with tetanic stimulations triggers a
robust LTD of subthalamo-nigral transmis-
sion through an NMDAR-mediated inter-
nalization of postsynaptic GluA2-AMPAR.

7 7 Interestingly, we also demonstrate that nigral
0 D-AP5 (n=19) o BAPTA (n=11) LTD requires endogenous DA release activat-
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(C-terminal phosphorylation of AMPA receptors and their subsequent internalization.

D1/5R-mediated signaling. We thus finally tested whether acti-
vating D1/5R would rescue plasticity expression in a DA-depleted
context. Interestingly, the simple addition of the D1/5R agonist
SKF81297 (2 uM) to the bath was sufficient to restore LTD ex-
pression, confirming that endogenous DA-mediated activation
of D1/5R is necessary to induce LTD at STN-SNr synapses
(74.3 = 1.8% of baseline, n = 13; p < 0.0001, two-tailed paired ¢
test; Fig. 7a). To note, similar experiments performed while bath-
ing slices from 6-OHDA-lesioned animals with the D2 receptor
agonist quinpirole (5 uM) failed to reveal any plastic change
(103.5 = 1.5% of baseline, n = 13; p > 0.05; Fig. 7b), suggesting
that D1-like dopamine receptors only are involved in the dopa-
minergic modulation of subthalamo-nigral LTD. Altogether, our
results demonstrate that repetitive activation of STN inputs pro-
duces a LTD of excitatory synaptic transmission in the SNr that
requires the proper coordination of both NMDAR-mediated glu-
tamate signaling and D1/5R-mediated DAergic modulation, a
property that is lost in a chronic DA depletion experimental
model of PD. More importantly, this suggests that DA loss in-
duces plastic impairments at this connection that governs the
output of the basal ganglia and could thus contribute to the onset
of parkinsonian symptoms.

Discussion

SNr neurons represent the main BG output and tonically inhibit
motor portions of the thalamus. Thus, understanding the plastic

LTD occurs through postsynaptic, NMDA-dependent endocytosis of GluA2-containing AMPA receptors. a, LTD induc-
tion protocol in the presence of the NMDA receptor antagonist o-APV (50 wum; n = 19). Inset, Traces from a representative
experiment illustrating the average eEPSC from 0 to 5 min (1) and 30 to 35 min (2). The gray lines in @ and b represent the shape
of control tetanus-induced LTD from Figure 2a for comparison (control vs -APV, p << 0.0001; one-way ANOVA with Tukey's post
hoctest). b, LTD induction protocol in the presence of the calcium chelator BAPTA inside the patch pipette (10 wm; n = 11). Inset,
Traces from a representative experiment illustrating the average eEPSC from 0 to 5 min (1) and 30 to 35 min (2). ¢, LTD induction
is prevented in the presence of GluA2,y peptide (filled circles, n = 19) but not GluA2;, peptide (open circles, n = 16) inside the
patch pipette (GluA2;, vs GluA2,y, p << 0.0001; one-way ANOVA with Tukey's post hoc test). Inset, Traces from representative
experimentsillustrating the average eEPSCfrom 0 to 5 min (black) and 30 to 35 min (gray), in the presence of GluA2;,, (open circles)
or GluA2,, (filled circles). d, Schematic representation illustrating the potential signaling pathway underlying tetanus-induced
LTD. Tetanic-stimulation induced calcium entry through NMDA receptors activates phosphorylation cascades, leading to the

LTD of excitatory transmission can either
occur through persistent presynaptic
alterations in glutamate release or postsyn-
aptic changes in glutamate receptor density.
AMPAR removal-mediated LTD has been
extensively described throughout the brain
and is commonly triggered by the synaptic
activation of either NMDAR or mGluR.
Here, we report that tetanic stimulation-
induced LTD of STN-SNr transmission
requires the activation of NMDAR and
postsynaptic calcium influxes. Several path-
ways can lead to the activity-dependent
internalization of AMPAR, including
C-terminal tyrosine phosphorylation of
GluA2 subunits by Src family kinases (Ah-
madian et al., 2004), calcineurin/AKAP-
related pathways (Jurado et al, 2010) or
PKC signaling (Seidenman et al., 2003). In-
terestingly, infusing a mimetic peptide com-
peting with GluA2-containing AMPAR for
C-terminal tyrosine phosphorylation (GluA2,y) prevented plasticity
induction, suggesting that tyrosine phosphorylation-induced
removal of AMPAR is the mechanism underlying NMDAR-
dependent subthalamo-nigral LTD.

NMDA receptors are heterotetrameric proteins formed of
two mandatory GluN1 subunits combined with two GluN2
(A—C or D) or GluN3 (A or B) subunits, GluN2A- and GluN2B-
containing receptors being the most frequently encountered in
the CNS. Although both GluN2A- and GluN2B-NMDAR are
required for plasticity induction (Yashiro and Philpot, 2008),
several studies suggest that NMDAR-mediated LTD preferen-
tially involves GluN2B-NMDAR (Liu et al., 2004; Tigaret et al.,
2006). Interestingly, GluN2B is the main NMDA subunit ex-
pressed in SNr neurons (Tse and Yung, 2000; Sudrez et al., 2010),
which could explain why plasticity induction at these synapses
essentially leans toward LTD. Moreover, although the consequences
of DA depletion on nigral NMDAR composition have not been as
extensively evaluated as in the striatum where a shift toward
GluN2A-predominant NMDAR is observed (Paillé et al., 2010), a
recent study reported that 6-OHDA-treated rats exhibit an identical
expression of nigral NMDAR, consistent with our data (Fig. 2d), but
display higher levels of phosphorylated GluN2B suggesting that
changes in NMDA-mediated signaling could occur following DAer-
gic denervation (Quintana et al., 2012).
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Figure6.  Acute dopaminergic modulation of subthalamo-nigral LTD. a, LTD induction protocol in
the presence of the D1/5 receptor antagonist SCH23390 (5 um; n = 16). Inset, Traces from a repre-
sentative experimentillustrating the average eEPSCfrom 0to 5 min (1) and 30to 35 min (2). The gray
lines in @ and b represent the shape of control tetanus-induced LTD from Figure 2a for comparison
(control vs SCH23390, p << 0.0001; one-way ANOVA with Tukey’s post hoc test). b, LTD induction
protocol in the presence of the PKA antagonist H89 (10 wum; n = 14; control vs H89, p << 0.0001;
one-way ANOVA with Tukey's post hoc test). Inset, Traces from a representative experiment llustrat-
ing the average eEPSC from 0 to 5 min (1) and 30 to 35 min (2). ¢, D1/5 receptors and PKA are
specificallyinvolvedin the phosphorylation of the NMDA receptor GIuN 1 subunit during LTD induction.
The levels of phospho[Ser-897]-GIuNT were determined as described in Materials and Methods. Top,
Representative autoradiograms. Bottom, Summary of data expressed as means == SEM (n = 3).The
amount of phosphorylated GIuNT is expressed as a percentage of that determined in basal condition
(control). The increased phosphorylation of GIuN1 triggered by LTD induction was prevented by the
D1/5 receptor antagonist SCH23390 (10 ) and the PKA inhibitor H89 (10 um). *p = 0.007 versus
respective control group; one-way ANOVA followed by Bonferroni post hoc test.

DAergic control of STN-SNr LTD

DA is a major regulator of SNr neuronal activity and BG outputs.
At the presynaptic level, both DA D1 and D2 receptors have been
shown to regulate GABA (Radnikow and Misgeld, 1998; de Jests
Aceves etal., 2011) and glutamate release (Ibafiez-Sandoval et al.,
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the shapes of control LTD from Figure 2a and deficient LTD in DA-depleted animals from Figure
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post hoc test). Inset, Traces from a representative experiment illustrating the average eEPSC
from 0 to 5 min (1) and 30 to 35 min (2). b, LTD induction protocol at STN-SNr synapses from
DA-depleted animals in the presence of the D2 receptor agonist quinpirole (5 um; n = 13;
6-OHDA + quinpirole vs 6-OHDA, p > 0.05; one-way ANOVA with Tukey’s post hoc test). Inset,
Traces from a representative experiment illustrating the average eEPSC from 0 to 5 min (1) and
30to35min (2).

2006). Additionally, a D1/5R-mediated postsynaptic modulation
of SNr neuronal excitability has also been reported (Zhou et al.,
2009). Furthermore, acute blockade of both DA DIR and D2R
induces a switch in the pattern of SNr neurons from tonic single-
spike pacemaking to rhythmic bursting in vitro, presumably
through combined modulations of synaptic efficacy and changes
in membrane excitability (Zhou et al., 2009; de Jestis Aceves et al.,
2011).

In this study, we describe a new postsynaptic D1/5R-mediated
signaling pathway controlling the strength of STN-SNr synaptic
inputs in an activity-dependent manner. This effect is mediated
by endogenous DA presumably released from SNc neuronal den-
drites (Cheramy et al., 1981) or SNr DAergic neurons which
could represent up to 20% of the SN DAergic cells (Gonzélez-
Herndndez and Rodriguez, 2000), as it is completely abolished by
acute D1/5R blockade or chronic DA deprivation. To date, the
crosstalk between D1/5R- and NMDAR-mediated signaling has
been shown to occur either through indirect intracellular signal-
ing pathways (for review, see Cepeda and Levine, 2006) or via
direct interactions between receptors at the plasma membrane
(Lee et al., 2002). Here, we show that the DAergic control of
nigral LTD involves an intracellular interplay between D1/5R and
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NMDAR because tetanic stimulation induces a D1/5R-mediated
phosphorylation of the GluN1 NMDAR subunit at Ser897, a res-
idue targeted by the PKA pathway (Tingley et al., 1997). The
intracellular D1/5R-mediated modulation of NMDAR function
usually relies on cAMP/PKA- (Cepeda et al., 1993; Snyder et al.,
1998), Src kinase- (Dunah et al., 2004; Hallett et al., 2006; Yang et
al., 2012), or PKC-dependent phosphorylation processes (Chen
et al., 2004; Li et al., 2010). Although we have not addressed the
nature of these interactions in detail, the prevention of GluN1
phosphorylation and consequent disruption of SNr LTD by the
PKA inhibitor H-89 strongly support the involvement of cAMP/
PKA-mediated intracellular signaling in the control exerted by
D1/5R on NMDAR-dependent nigral LTD.

Synaptic plasticity in the basal ganglia

Within the BG network, the corticostriatal synapse is by far the
most studied excitatory connection because the early observation
that long-term plasticity at this major BG input is impaired in
rodent models of PD (Calabresi et al., 1992b), leading to several
pioneering experiments demonstrating the critical role of corti-
costriatal plasticity in motor control (for review, see Lerner and
Kreitzer, 2011). Here, we found that STN-SNr synapses govern-
ing the output of the network present similarities but also differ-
ences regarding plasticity when compared with this connection.
Although both synapses are depressed by tetanic stimulation, the
routes leading to LTD in the striatum and the SNr diverge. Stri-
atal LTD has a presynaptic locus of expression and involves an
mGluR- and L-type calcium channel-dependent postsynaptic re-
lease of endocannabinoids mediating a retrograde downregula-
tion of presynaptic neurotransmitter release (Ronesi et al., 2004;
Kreitzer and Malenka, 2005). In contrast, blocking group I/II
mGluR or CB1 receptors does not prevent nigral LTD, which
rather requires an NMDA-dependent endocytosis of postsynap-
tic AMPAR.

Another common feature is the requirement for endogenous
DA and the consequent plasticity impairments in hypodopamin-
ergic conditions, although striatal LTD induction requires D2-
mediated signaling (Calabresi et al., 1992a; Kreitzer and Malenka,
2007) when nigral LTD depends on D1/5R activation. This find-
ing suggests that synaptic plasticity at both the input and output
of the BG network are impaired under DA deprivation. Interest-
ingly, recent investigations at corticosubthalamic connections re-
vealed both tetanic stimulation-induced postsynaptic forms of

experimental parkinsonism

Schematic representation illustrating the proposed signaling pathway by which D1/5 receptors modulate tetanus-
induced LTD. Through the G-protein they are coupled with, D1/5 receptors enhance PKA activity which in turn modulates NMDA-
dependent pathways including NMDA-dependent AMPA receptor endocytosis (a). This signaling pathway is lost in PD, preventing
D1/5 receptor-mediated phosphorylation of the NMDA receptor GIuN1 subunit and subsequent NMDA-dependent endocytosis of
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LTP and presynaptic forms of LTD, and
a low-frequency stimulation-elicited pre-
synaptic form of LTP, all of which are sen-
sitive to DA depletion (Shen et al., 2003;
Yamawaki et al., 2012). Thus, there could
be a large diversity of DA-dependent
plastic mechanisms within mesencephalic
glutamatergic synapses regulating BG
outputs.

Functional implications

We show here that subthalamo-nigral
LTD islost in experimental parkinsonism.
According to BG functional models, STN-
SNr LTD could be a synaptic mechanism
involved in action selection by the BG
output by favoring the selection of desired
motor programs (Mink, 1996). Conse-
quently, when this physiological process
is impaired in PD, action selection is not
properly achieved, leading to paucity of movement and
bradykinesia.

Interestingly, lesioning the STN has been shown to decrease
the bursting activity of SNr neurons in hemiparkinsonian rats
(Murer etal., 1997; Tseng et al., 2000, 2001) and to reduce motor
symptoms in MPTP-treated monkeys and PD patients (Bergman
etal., 1990; Guridi et al., 1996), suggesting a participation of STN
inputs in the emergence of abnormal nigral activity and motor
impairment. This is consistent with a recent study on hemipar-
kinsonian rats providing evidence that the entrainment of SNr
neurons to pathological rhythms could be achieved either
through the striato-nigral direct pathway and/or the STN-SNr
pathway (Brazhnik et al., 2012). Therefore, losing the ability to
downregulate STN-SNr transmission through LTD might indeed
facilitate the spreading of pathological activity to the SNr (Bellus-
cio et al., 2003; Brazhnik et al., 2012) and contribute to the ab-
normal activity pattern of BG outputs observed in PD.

The fact that activating D1/5 receptors restores LTD expres-
sion suggests that, in addition to reinstating a proper regulation
of cortical inputs at the striatal level, some of the effects of DA
replacement therapies might occur through a rescue of STN-SNr
plasticity. This could be the case for L-DOPA which has been
suggested to provide therapeutic benefit from both striatal and
nigral sites of action (Robertson and Robertson, 1988, 1989).
This hypothesis is further supported by a recent clinical study on
PD patients demonstrating that L-DOPA restores synaptic plas-
ticity of striato- and pallido-nigral inhibitory inputs to SNr neu-
rons through the recruitment of SNr DAergic D1R (Prescott et
al., 2009). Furthermore, Aceves et al. (2011) recently demon-
strated that striato-nigral GABAergic synapses show tetanus-
induced bidirectional plasticity, expressing either LTD or D1/
5R-dependent facilitation depending on whether nigral NMDAR
are simultaneously activated by subthalamo-nigral glutamatergic
inputs or not. Importantly, avoiding dopamine D1/5R activation
favors striato-nigral LTD, suggesting that dopamine deprivation
could at the same time prevent subthalamo-nigral downregula-
tion and striato-nigral facilitation, both of which would increase
the firing activity of SNr neurons and repress movement execu-
tion. SNr neurons can thus be envisioned as coincidence detec-
tors switching the gate between direct and indirect basal ganglia
pathways, and dysfunctions in the DAergic modulation of synap-
tic plasticity at excitatory and inhibitory inputs to SNr neurons
could contribute to the genesis of PD-related pathological BG
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outputs and thereby participate in the emergence of pathological
motor symptoms.

These results also provide interesting information regarding
deep-brain stimulation of the STN (STN DBS), the most effective
neurosurgical therapy for treating PD-related movement disor-
ders (Benazzouz et al., 1993; Limousin et al., 1995). Particularly,
because STN-SNr synapses propagate either pathological or STN
DBS-generated inputs to nigral neurons (Bosch et al., 2011; Bra-
zhnik et al., 2012), the absence of synaptic plasticity at these con-
nections in a DA-depleted context could explain the clinical
observation that motor symptoms of PD reappear within seconds
to minutes after switching STN DBS off (Temperli et al., 2003),
suggesting that the synaptic transmission of pathological
rhythms to SNr neurons is rapidly reinstated after therapeutic
stimulation ceases.
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